CMOL v 2.0

Calculations on chemical formulas: molar mass , conversions from grams to moles,

molecules, volume of gas... Centesimal composition, empirical formula..

CMOL v 2.0: Calculations with moles	
File Data Tools Info	
AgClO4 Formula AgClO4 >> silver perchlorate random Accept	Composition - Empirical / molecular formula < formula C 2.4
Molar mass calculation (MM)	H 0.5
calc.: 107.87+35.453+15.999*4 auto	g (or %)
0 1 2 3 4 5 6 7 8 9 + * () . = Molar mass (MM) 207.32 g/mole verify	rst 🗴 Molar mass 58.015
	Gas molar mass calc.
Conversions	d 2.59 g/I P 1 at T 273 K ok
● grams ○ moles ○ "molecules" 56 1000 MMg 2.70e-1 1000 MMg 1.62e23	Save composition Save formula
□ gas 1mol:22.4 L ↓ ↓ ↓ ↓ □ atm ↓ □ gas 1mol:22.4 L ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	P,V,T units conversion P: 780 mm 103.99 kPa 1.0263 atm V: 6.78e-4 m ³ 678 cm ³ 6.78e-1 L
Save Generate Accept	T: 25 C 77.000 F 298.15 K
<u>⊫</u>	

- Introducing / selecting / generating a formula
- Data
- <u>Calculation of the molar mass</u>
- Conversions grams, moles...
- <u>Centesimal composition</u>
- Empirical / molecular formula
- <u>P, V, T units conversion</u>

Introducing / selecting / generating a formula

You can introduce the formula manually (without keeping in mind the format of subindexes, etc) whenever all their elements are in the database (which you can edit and enlarge)

It can also be selected from the listbox or selected at random by the program. In both cases the compound's name will be shown.

In all cases the formated formula will be shown at the left:

	Formula	
	 ▼	
	HF 🔼	
	нсі 📃	
-	HBr	⊢
-	HI	
	H2S	F
1	HCIO4	
	HCI03	
	HCIO2	а
	HCIO	
	HBrO3	
	HBrO2	
le	HIO4	ļu
	HIO3	F
	HIO2	
1	H2SO4 H2SO3	
	HNO3	L
L	HNO2	
	H2CO3	
	H3PO4	
	НЗРОЗ	
	NH4F	
	NH4CI	

Data

The calculations with the formulas use a database of elements that you can edit/enlarge with the option of the menu...

		Data Tools Info
Chemical eleme	nts 🔳 🗙	Atomic masses Elements edition
z Element 1 hidrogen H 3 liti Li 4 beril·li Be 5 bor B 6 carboni C 7 nitrogen N 8 oxigen O 9 fluor F	 Element name oxigen Smb O Z 8 AM 16.00 New Accept 	
11 sodium Na	Exit Ok	

Calculation of the molar mass

An option is to perform the calculation and to check the result with the button **verify**. Another is that the program calculates it by pressing the button **auto**.

Molar mass calculation (MM)			
calc.: 107.87+35.453+15.999*4 auto			
0 1 2 3 4 5 6 7 8 9 + * () . =			
Molar mass (MM) 207.32 g/mole verify			

Conversions grams, moles...

You can select the type (grams, moles, " molecules ") of the data that should be converted to the other types with the mouse	Conversions Grams C moles C "molecules" 33.400 100: MMg 5.74e-1 100: 6.02 1023 gas 100: 22.4L C L. P 1.4 atm 9.7665
If the substance is a gas (as CO2,	C L. (s.c 12.878 L C L. 7 1.4 atm 9.7665 T 290 K
CH4, etc) you can activate the	Save Generate Accept
checkbox to also perform	
calculations of volume (in S.C. and	at any P and T)

You can enter a data or generate it at random and the conversions will be shown. Results can be saved in a text file.

Note:

(*): lonic compounds (salts,...) aren't formed by actual molecules, but by groups of ions of opposite sign that are the smallest units of the compound. Always we can say "formulas".

Centesimal composition

Once set a formula you can obtain its centesimal composición clicking on the button

The result can be saved in (or added to, if it already exists) a text file by means the button

Save composition or the menu option	File Data Tools		
	Save Ask for exit	Conversions . Centesimal composition -	C
	Exit	Empirical/molecular formula	

Empirical / molecular formula

It can be obtained here: Elements are entered or selected from the	Composition - Empirical / molecular formula < formula C 2.4 C 2.4 C 2.4
list, and also their amounts.	H 0.5 Symbol: g (or %)
Once all elements are entered, clicking on $^{\prime}$	rst X Molar mass 58.015
the formula will be calculated and shown:	
C4H10	Gas molar mass cale. d 2.59 g/l p 1 at T 273 K ok
This will be the <i>empirical</i> (the simplest) or if	Save composition Save formula

you have specified a molar mass, the *molecular* formula.

Molar mass of gaseous compounds can be calculated from their density (or from grams and volume expressed as a quocient) at certain presure and temperature.

Also here the case can be saved in a text file...

P, V, T units conversion

At this frame you can convert units of:

- <u>Pressure</u>: mm Hg (or Torr) \leftrightarrow kPa \leftrightarrow atm ,
- <u>Volume</u>: $m^3 \leftrightarrow cm^3 (or ml) \leftrightarrow L (or dm^3)$
- <u>Temperature</u>: $^{\circ}C \leftrightarrow ^{\circ}F \leftrightarrow ^{\circ}K$

by entering a value in the suitable texbox + **return**.

The converted units will be shown in the other textboxes of the same row.

P,V,T units conversion					
P: 780	mm	103.99	kРа	1.0263	atm
V: 6.78e-4	m³	678	cm³	6.78e-1	L
T: 25	с	77.000	F	298.15	к